Comparative Genomics Analysis of Mycobacterium ulcerans for the Identification of Putative Essential Genes and Therapeutic Candidates
نویسندگان
چکیده
Mycobacterium ulcerans, the causative agent of Buruli ulcer, is the third most common mycobacterial disease after tuberculosis and leprosy. The present treatment options are limited and emergence of treatment resistant isolates represents a serious concern and a need for better therapeutics. Conventional drug discovery methods are time consuming and labor-intensive. Unfortunately, the slow growing nature of M. ulcerans in experimental conditions is also a barrier for drug discovery and development. In contrast, recent advancements in complete genome sequencing, in combination with cheminformatics and computational biology, represent an attractive alternative approach for the identification of therapeutic candidates worthy of experimental research. A computational, comparative genomics workflow was defined for the identification of novel therapeutic candidates against M. ulcerans, with the aim that a selected target should be essential to the pathogen, and have no homology in the human host. Initially, a total of 424 genes were predicted as essential from the M. ulcerans genome, via homology searching of essential genome content from 20 different bacteria. Metabolic pathway analysis showed that the most essential genes are associated with carbohydrate and amino acid metabolism. Among these, 236 proteins were identified as non-host and essential, and could serve as potential drug and vaccine candidates. Several drug target prioritization parameters including druggability were also calculated. Enzymes from several pathways are discussed as potential drug targets, including those from cell wall synthesis, thiamine biosynthesis, protein biosynthesis, and histidine biosynthesis. It is expected that our data will facilitate selection of M. ulcerans proteins for successful entry into drug design pipelines.
منابع مشابه
Differential Gene Repertoire in Mycobacterium ulcerans Identifies Candidate Genes for Patho-Adaptation
BACKGROUND Based on large genomic sequence polymorphisms, several haplotypes belonging to two major lineages of the human pathogen Mycobacterium ulcerans could be distinguished among patient isolates from various geographic origins. However, the biological relevance of insertional/deletional diversity is not understood. METHODOLOGY Using comparative genomics, we have investigated the genes lo...
متن کاملIdentification of phthiodiolone ketoreductase, an enzyme required for production of mycobacterial diacyl phthiocerol virulence factors.
Diacyl phthiocerol esters and their congeners are mycobacterial virulence factors. The biosynthesis of these complex lipids remains poorly understood. Insight into their biosynthesis will aid the development of rationally designed drugs that inhibit their production. In this study, we investigate a biosynthetic step required for diacyl (phenol)phthiocerol ester production, i.e., the reduction o...
متن کاملBiochemical characterization of PE_PGRS61 family protein of Mycobacterium tuberculosis H37Rv reveals the binding ability to fibronectin
Objective(s): The periodic binding of protein expressed by Mycobacterium tuberculosis H37Rv with the host cell receptor molecules i.e. fibronectin (Fn) is gaining significance because of its adhesive properties. The genome sequencing of M. tuberculosis H37Rv revealed that the proline-glutamic (PE) proteins contain polymorphic GC-rich repetitive sequences (PGRS) which have clinical importance i...
متن کاملIdentification of cutaneous granuloma caused by Mycobacterium marinum using PCR method
Atypical Mycobacterium granulomatous skin infections are often accured by Mycobacterium marinum, M. ulcerans, M. fortuitum, and M. avium colonies. Skin infections probably originate from an environmental source such as contacting with aquatic animals, fish farming and swimming in the pools, and inoculate into skin through skin wounds, scratches, trauma, and surgery. The lesions appear as purple...
متن کاملGenome-wide Analysis of Mycoplasma hominis for the Identification of Putative Therapeutic Targets
Ever increasing propensity of antibiotic resistance among pathogenic bacteria raises the demand for the development of novel therapeutic agents to control this grave problem. Advances in the field of bioinformatics, genomics, and proteomics have greatly facilitated the discovery of alternative drugs by swift identification of new drug targets. In the present study, we employed comparative genom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012